
CMPSCI 677 Operating Systems Spring 2025

Lecture 6: February 20
Lecturer: Prashant Shenoy Scribe: Srividhya P.(2023), Tien-Ru Chen(2024), Shreya Raj(2025)

6.1 Overview

In the previous lecture, we learned about the different kinds of threads, specifically user-level threads and
kernel-level threads. In this lecture we will cover:

Multiprocessor scheduling

Distributed scheduling

Case Studies : V-System, Sprite, Volunteer Computing, Condor

Cluster Scheduling

6.2 Multiprocessor scheduling

Here, we will talk about single machines with shared memory multiprocessor or multi-core CPU. Looking
at the diagram below, the circles at the top represent processors. Caches, which are ’temporary memory’,
are present at each of the processors which will speed up the performance of anything that is executing on
those processors. They keep instructions or data, and are used to speed up the execution of the program.
There can be be more multiple levels of caches (L1, L2, L3). Here, L1 caches are smaller and faster than L2
caches, and both are smaller and faster than the shared memory at the bottom layer. The diagram shows
dedicated caches to processors, however they can also be shared. Memory, or RAM, are shared across all of
the processors using system bus (represented by the blue line in the diagram); a program running on one
processor can access any address in memory. Multi-processor scheduling involves scheduling tasks in such
environment.

Figure 6.3: Multiprocessor scheduling.

6.2.1 Central queue implementation

In a central queue, all of the processors share a single global queue or run queue where all the threads and
processes are present. Execution of a process happens one quantum at a time and whenever the time slice

6-1



6-2 Lecture 6: February 20

on any processor is going to end, that processor will look at the ready queue, pull a thread or process from
that queue, and schedule it. This is essentially what happens in a uni-processor system.

Figure 6.4: A central queue.

6.2.2 Distributed queue implementation

In a distributed queue, there are more than one queue in the system. The processes or threads are going to
be part of one of those queue. When a processor becomes idle it is going to look at its local queue, and only
take the next job in that queue to schedule for execution one quantum at a time.

Figure 6.5: A distributed queue.

6.2.3 Pros and cons of centralized queue and distributed queue

The centralized queue is just shared data structure. As the number of processors grows, we face the problem
of synchronization bottleneck. We have to use some synchronization primitives - the standard one being
a lock (you cannot have one thread being accessed by multiple processes at the same time, because it will
lead to data inconsistency, so you protect the data and support “one at a time” access with a lock). When
the time slice on one processor ends, that processor has to go to the queue, lock the queue, and pick a job. If
another processor becomes idle during this, this processor has to wait until the previous processor has picked
the job and released the lock. No matter how efficient synchronization primitives are, there is still going to
be synchronization overhead. That overhead will grow as the number of processors increases because there
is going to be lock contention. There will be a lot of idle time-slices which will be wasted.

Distributed queue experiences less contention. When there is one queue per processor, there is hardly
contention at all. The processor just goes to its local queue and pull a thread. Multiprocessor scheduling
wouldn’t be impacted by the # of processors in a system. But, distributed queue needs to deal with the
added complexity of load imbalance. Suppose there are n tasks. The n jobs will be split across the
distributed queues. The splitting technique matters - if the queues are not equally balanced then some
tasks are going to get more CPU time allocation than others. Tasks in shorter queues get more round-robin
timeshare. To deal with this, every once in a while we need to re-balance this queue if there is imbalance in



Lecture 6: February 20 6-3

the load by looking at all the queues and their lengths, and equalize them again so that every process gets
approximately fair share of CPU time.

An important concept that plays a big role in time efficiency is Cache Affinity. A process or thread has
an affinity to a processor when the cache there holds its data. Central Queues are an example of poor cache
affinity, which is why they are also not very efficient and its their biggest disadvantage. For example, if
processor 1 picks up a job from the queue and schedules it for a time slice. By the time that time slice ends,
the cache for that processor would be warm, with data and instructions for that job stored in the cache.
However, because the time slice has ended, the process goes to the end of the queue. It eventually appears at
the front again, and gets scheduled at another processor which is idle at that time. We are aware that some
caches are not shared across processors, and there is no mapping of tasks to processors in the centralized
queue, that processor will start from a cold cache with no data and instructions for this job. The initial
instructions will all be cache misses. Program execution is slowed down to warm up the cache, and then the
time slice ends. That is why the central queue has poor cache affinity.

This argues for using distributed queue-based scheduling. Once a process joins a queue, it will stay in the
same queue. Next time it gets scheduled, there will be data and instructions from the previous time slice,
i.e., start with a warm cache. Once in a while, the process could be moved to another process for load
balancing where it will start from a cold cache, but it is not a common scenario. Even though you might try
to schedule a process or thread on the same processor where it was executed last, every time you run again,
you still might not have all your data and instructions in the cache due to other processes in your system.
You want to have larger time slices or quantum durations to account for the time when there is some early
fraction of the quantum, maybe all caches miss. You want to still get to run on the caches once it's warmed
up for some period of time. As a result, time slices in multiprocessor systems tend to be longer than the
ones in uniprocessor systems.

While designing a CPU scheduler, Cache Affinity plays the most important part. It should be considered
over synchronization bottleneck and lock contention. So, there are a couple of things to keep in mind while
scheduling on multiprocessors: 1. Exploit cache affinity: Try to schedule on the same processor that a
process/thread executed last. 2. Pick larger quantum sizes for the time slicing to decrease context switch
overhead.

6.2.4 Scheduling parallel applications on SMP using gang scheduling

One last point on multiprocessor scheduling. Until now, we assumed that the processes/threads are indepen-
dent. We just picked the one at the front of the queue and we did not care about what was running in other
processors. If you think of a parallel process with many many threads or a job with many processes that are
coordinating some larger activities, you might not want to schedule them independently. For example, let's
say there are two cpu's and a process with two threads. Let's assume when these threads are executed they
also need to communicate with each other for application needs. When T1 runs on Processor A, T2 may
not be running on Processor B i.e. some other job may be running on Processor B. If T1 sends a message
to T2, then it will wait for a reply until processor B runs T2 (so T2 can actually receive the message and
process it). There will increase the waiting time.

Figure 6.5: Two cpu, and a process with two threads.



6-4 Lecture 6: February 20

Gang scheduling schedules parallel jobs to run on different processors together, as a group, in the same time
slice. This allows true parallelism, i.e. all the threads of a process can run simultaneously. Gang scheduling
is used in special-purpose multi-processors that are designed specifically to execute specialized, massively
parallel applications such as scientific jobs.

There are 2 ways to handle the situation where one component (thread or process) blocks here - you can
either preempt the entire application (co-scheduling). The remaining n − 1 timeslices will end and the all
the gang components will resume when the other thread gets unblocked. Or, you can adjust the priority
and perform Smart scheduling. This will hold off from relinquishing the CPU allowing the other threads
to continue to do useful work till that specific time slice ends. (However, if there are messages sent to the
threads which are blocked during the execution, it can still cause performance issues).

Q: Is there a general purpose scheduling that you would normally run on a parallel machine and switch to
gang scheduling only when there is a parallel application?

A: That is technically possible, but the hardware machines that gang schedulers run on are so specialized
you would not run general-purpose applications.

Q: What is spin-lock?

A: There are many ways to implement a lock. One form is while the thread is waiting for the lock to get
released, it will wait in a loop (“spin”) while repeatedly checking if the lock is available. It wastes cycle but
it is one way to implement a lock. It is a form of busy waiting. In some parallel application that’s how you
implement a lock. Other way is if the lock is not free, the thread blocks the process.

Q: If a machine has four cores and a process runs on two cores, what will happen to the other two?

A: That depends on the scheduling policy of the machine. If it implements gang scheduling, another process
that requires two threads and schedules them. If it is general purpose scheduler, you can schedule any other
process in the queue.

Q: How do you handle gang scheduling when there are more threads than processors?

A: In gang scheduling, if you have more threads than processors, for instance 6 threads but only 4 processors,
you schedule 4 threads to run simultaneously on the 4 processors. The remaining 2 threads will need to
wait until a processor is available. This approach might require managing which threads were previously run
to maintain efficient scheduling. Ideally, the number of threads should match the number of processors to
avoid this complexity. For example, with 4 processors, optimally you would have 4 threads, ensuring each
processor is dedicated to a single thread, simplifying the scheduling process.

6.3 Distributed scheduling

6.3.1 Motivation

Taking advantage of idle machines in a network of connected machines, to schedule incoming tasks which
come to an overloaded machine instead. Consider the scenario in which we have N-independent machines
connected to each other over a network. When a new application or process arrives at one of the machines,
normally, the operating system of that machine executes the job locally. In distributed scheduling, you have
an additional degree of flexibility. Even though the user submits a job at machine I, the system may actually
decide to execute the job at machine g and bring back the results. The basic reason is the harvest idle cycles
on workstations. Referred to as scheduling in a Network of Workstations (NoW). Distributed scheduling -
taking jobs that are arriving at one machine and running them somewhere else in the system - does this



Lecture 6: February 20 6-5

make sense (any advantage to this)?

Scenario 1: Lightly loaded system

You should run the job locally at the machine where it arrives. No benefit of moving a job because you have
enough resources to do it.

Scenario 2: Heavily loaded system

You want to move a job somewhere else but there are no resources available in the system for you to run
that job.

Scenario 3: Moderately loaded system

If a job arrives at machine i, and machine i happens to be slightly less loaded than other machines, then run
it locally. If machine i happens to be more heavily loaded than other machines, then find another machine
to run that job. This scenario would actually benefit from distributed scheduling.

A more technical phrasing of the question would be: what's the probability that at least one system is
idle and one job is waiting? System idle means that exists some machine that has more resources to actually
run more jobs than it is currently running. Job waiting means there is a job that arrived at heavily loaded
machine and waiting to run. We benefit from distributed scheduling when both of these cases are true.

Figure 6.6: The relationship between system utilization and resource under utilization.

• Lightly loaded system:

P(at least one system idle) = high

P(one job waiting) = low

P(at least one system idle and one job waiting) = low

• Heavily loaded system:

P(one job waiting) = high

P(at least one machine idle) = almost zero

P(at least one system idle and one job waiting) = low

• Medium loaded system is the area of high probability under the curve



6-6 Lecture 6: February 20

Note: P(at least one system idle and one job waiting) = P(one job waiting) * P(at least one system idle)

The three lines are constructed by different system parameter settings but the overall curve is the point.

6.3.2 Design Considerations

Performance metric: Mean response time for the request

Load: CPU queue length and CPU utilization. Easy to measure and reflect performance improvement.

Types of policies:

• In static policy, decisions are hard-wired into scheduling algorithm using prior knowledge of the system.

• In dynamic policy, the current state of the load information is used to dynamically make decisions.

• In adaptive policy, parameters of the scheduling algorithm change according to load. Can pick one of
static or dynamic policy.

Preemptive vs. Nonpreemptive:

• Preemptive – once the job has started executing, the scheduler can still preempt it and move it
somewhere else. Transfer of a partially executed task is expensive due to the collection of the task’s
state.

• Nonpreemptive – only transfer tasks that have not begun execution.

• Preemptive schedulers are more flexible but complicated.

Centralized vs. Decentralized:

• Centralized – queue makes the decision to send a job globally.

• Decentralized – queue makes decision locally.

Stability: In queuing theory, the arrival rate should be less than system capacity or else the system will
become unstable. When the arrival rate reaches system capacity, machines don’t want incoming jobs and
send jobs off to other machines that also don’t want them. Lots of processes are being shuffled around and
nothing gets done. Queue starts building up, job floats around, system gets heavily loaded.

6.3.3 Components of scheduler

Distributed scheduling policy has 4 components to it.

i. Transfer policy determines when to transfer a process to some remote machine. Threshold-based
transfer policies are commonly used to classify nodes as senders, receivers, or OK.

ii. Selection policy determines which task should be transferred from a node. The simplest is to select
a newly arrived task that has caused the node to become a sender. Moving processes that have already
started executing is more complicated and expensive. The task selected for transfer should be such that the
overhead from task transfer is compensated by a reduction in the task’s response time.



Lecture 6: February 20 6-7

iii. Location policy determines where to transfer the selected task. This is done by polling (serially or in
parallel). A node can be selected for polling randomly, based on information from previous polls, or based
on nearest-neighbor manner.

iv. Information policy determines when and from the above information of other nodes should be collected
- demand-driven, periodic, or state-change-driven - so that the scheduler can make all of its decisions in the
right way.

6.3.4 Sender-initiated distributed scheduler policy

Figure 6.7: A sender-initiated distributed scheduler policy.

The overloaded node attempts to send tasks to the lightly loaded node.

• Transfer policy: CPU queue threshold, T, for all nodes. Initiated when a queue length exceeds T.

• Selection policy: newly arrived tasks.

• Location policy:

– Random: select a random node to transfer the task. The selected node may be overloaded and
need to transfer the newly arriving task out again. Is effective under light load conditions.

– Threshold: poll nodes sequentially until a receiver is found or the poll limit has been reached.
Transfer the task to the first node below a threshold. If no receiver is found, then the sender
keeps the task.

– Shortest: poll NP nodes in parallel and choose the least loaded node below T. Marginal improve-
ment.

There are more sophisticated approaches of finding the node, as the above trivial approaches are not
scalable for a high number of nodes. One such approach is, every machine keeps a table which stores
the load of other machines. Whenever load on a machine changes, it updates the tables stored in
other nodes. In this case the location policy is just a table lookup. The other way to achieve it is to
elect a coordinator which maintains the loads of all other nodes, so now there is a central table which
maintains the load of other nodes.

• Information policy: demand-driven, initiated by the sender.

• Stability: Unstable at high-loads

Q: Is the location implemented at a machine level where each machine makes a local decision or can it be
implemented globally at a coordinator node or a load balancer which keeps track of every machines’ load
information and makes decision?

A: Both policies exists. What is shown here is a local machine that is querying but the other policy also
exists.



6-8 Lecture 6: February 20

6.3.5 Receiver-initiated distributed scheduler policy

Underloaded node attempts to receive tasks from heavily loaded node.

• Transfer policy: when departing process causes load to be less than threshold T, node goes find
process from elsewhere to take on.

• Selection policy: newly arrived or partially executed process.

• Location policy:

– Random: randomly poll nodes until a sender is found, and transfer a task from it. If no sender is
found, wait for a period or until a task completes, and repeat.

– Threshold: poll nodes sequentially until a sender is found or poll limit is reached. Transfer the
first node above threshold. If none, then keep job.

– Shortest: poll n nodes in parallel and choose heaviest loaded node above T.

• Information policy: demand-driven, initiated by the receiver.

• Stability: At high loads, a receiver will find a sender with a small number of polls with high-probability.
At low-loads, most polls will fail, but this is not a problem, since CPU cycles are available.

Q: Is a receiver-initiated policy redundant or wasteful when it seeks out work?

A: No, a receiver-initiated policy is not inherently more redundant or wasteful compared to a sender-initiated
policy. Both policies serve as duals to each other, meaning they essentially perform the same function but
from opposite starting points. In situations where some machines are overloaded, they can act as senders and
attempt to distribute work. Conversely, machines with lighter loads can act as receivers, actively seeking out
work. The effectiveness of either policy hinges on the presence of the counterpart (a sender for every receiver
and vice versa). The choice between a sender-initiated or receiver-initiated approach typically does not
impact the overall efficiency significantly, but rather influences the time taken to establish a sender-receiver
pairing.

6.3.6 Symmetrically-initiated distributed scheduler policy

Sender-initiated and receiver-initiated components are combined to get a hybrid algorithm with the advan-
tages of both. Nodes act as both senders and receiver. Average load is used as threshold. If load is below
the low load, node acts as receiver. If load is above high threshold, node acts as sender.

Figure 6.8: A symmetric policy.

Improved versions exploit polling information to maintain sender, receiver, and OK nodes. Sender polls node
on receiver list while receiver polls node on sender list. The nodes with load above Upper Threshold(UT)
becomes a sender nodes, whereas nodes with load below Lower Threshold (LT) become the receiver nodes.



Lecture 6: February 20 6-9

Figure 6.9: An improved symmetric policy.

Q: Isn't there communication overhead?

A: Some; can broadcast your node and keep a table every minute or every time load changes.

Q: How to pick threshold?

A: That's configurable parameter; policy doesn't care.

6.4 Case Study

6.4.1 V-System (Stanford)

Following a state-change driven information policy, the V-System broadcasts information when there is
significant change in CPU/memory utilization. Nodes would listen to the broadcast and keep a load table.

The V-System also implements a sender-initiated algorithm which maintains a list of M least loaded nodes.
While off-loading, it probes a possible receiver randomly from M and transfers job only if it is still a
receiver. When locating a node to receive job transferal, the system needs to double check whether the node
on the list of M least loaded nodes is still a receiver because the load table is typically not updated super
frequently unless policy did on-demand polling. One job is off-loaded at a time. V-system doesn’t implement
a symmetrically initiated distributed scheduling policy. The machine could either be a sender or a receiver.
The middle ground doesn’t exist.

Q: Is M constant? Does it change?

A: M is decided based on number of nodes in the environment. M is proportional to the size of the network.
Optimum value is picked by the system.

6.4.2 Sprite (Berkeley)

Sprite assumes a workstation environment in which ownership is king. When users are on their desktop they
own it, and no other tasks will run on it. Other tasks can only run on desktops when there is no user using
it. Like V-System, Sprite also uses state-change driven information policy and implements a sender-initiated
scheduling algorithm.

There is a centralized coordinator which keeps the status of load on all the machines. They made an
assumption that if there is no mouse or keyboard activity for 30 seconds and the number of active processes
is less than a threshold meaning there is at least one processor idle the node becomes a receiver. Foreign
processes get terminated when the user returns.

Sprite implemented process migration so that the process can suspend running job on a node and continue
running from its last state at some other node, instead of killing and restarting the job. Process migration



6-10 Lecture 6: February 20

first stops a running job, writes out all registers and memory contents to disk, and transfers the entire
memory contents as well as kernel state to receiver machine. Process migration is fairly complicated and
comes with many problems e.g. I/O, network communication. Sprite comes at restriction and can only
migrate certain types of process.

How does process migration works? It says process is a program executing in memory. To migrate the
process, take the memory contents and move it to another machine. Since there is no shared memory,
we use the distributed file system as intermediary. This will not be possible if a process is doing network
communication because the IP address is tied to the machine and you can’t move the process in the middle
to another machine because the new machine will have a different IP address and all the socket connections
will be broken.

Steps:

1. Suspend the execution of the process, so that its memory contents no longer change.

2. Copy the contents from memory to disk.

3. On the other machine, start paging in. Since the file system is shared and not the memory, we can load
the process into receiver’s memory.

Q: Are the jobs exclusively CPU, or they can do I/O too?

A: They can do I/O. There is filesystem shared across all machines in some centralized server.

Q: What if everybody goes to lunch (leave the machine idle) and comes back to work (use machine) at the
same time?

A: There can be a queue of jobs awaiting execution, so they can be run on idle nodes when users are away.

Q: Do processes declare whether they can be migrated?

A: On some degree it depends on what the user wants to do. If the user knows if the process does not require
network communication, then yes it can be declared.

Q: Does process migration between two machines require same OS?

A: For Sprite, yes.

Q: Is it possible to move a process to a different hardware setup?

A: Yes, but the hardware must be of the same type. Moving a process across different hardware architectures,
like from Intel to ARM, is not feasible due to differences in registers, architecture, and compiled instructions.
Even with identical hardware, issues can arise, such as missing files the process was accessing or broken
network connections due to changes in IP addresses. However, for processes without dependencies on external
files or network connections, simply doing computational tasks, transferring the process can be possible,
similar to what was achieved with Sprite in process management.

6.4.3 Condor (U. of Wisonsin)

The distributed system that still exists today. Condor makes use of idle cycles on workstations in a LAN. It
can be used to run large batch jobs and long simulations. It has a central job management system, called
the condor master, which idle machines contact to get assigned waiting jobs. It supports process migration
and flexible job scheduling policies. If Condor runs on OS that does not support process migration, then
we need to configure condor to not terminate the process when user comes back or terminate the job. The
SLURM scheduler on UMass Swarm cluster is an example of this paradigm.



Lecture 6: February 20 6-11

Condor is not an OS, it is a software framework which runs over OS.

6.4.4 Volunteer Computing

It is a distributed scheduling on a very large scale over WAN. Volunteer computing is based on the idea
that PCs on the internet can volunteer to donate CPU cycles/storage when not in use and pool resources
together to form an internet scale operating system. A coordinator partitions a large job into small tasks
and sends them to the volunteer nodes.

Reliabilty is an issue here. So instead of relying on a single machine, the same subtask in run on k different
machines and it is made sure that the answer matches. Seti@home, BOINC and P2P backups are examples
for this paradigm.

Q: Is latency a factor about which machines are near and which machines are far?

A: The latency is not as big a problem because let’s say you do 30 second or one minute computation typical
latency anywhere on the network is going to be 100 some millisecond so you can pay hundreds of millisecond
cost and run for of 10 seconds.

6.5 Cluster Scheduling

Cluster Scheduling is scheduling tasks on a pool of servers. This differs from distributed scheduling on
workstations. We assume:

• Machines are cheap enough that looking for free CPU cycles on an ideal workstation is not required.
There is a dedicated pool of servers to run the tasks.

• Servers are more computationally more powerful than workstations.

• The users explicitly submit the jobs on the cluster.

Cluster scheduling can be analyzed with respect to two applications:

• Interactive Applications
These are applications where user has sent a request and is actively looking for a response. In this case
response time is an important factor in designing the scheduler, e.g., for web services.

• Batch Applications
These are long running computations which require powerful machine. In this case the throughput is
optimized, e.g., for running simulations.

6.5.1 Typical Cluster Scheduler

Typically, there are two kinds of nodes in a cluster - dispatcher and worker. A request (or task) follows the
following process:

1. The user submits a request to the dispatcher node.



6-12 Lecture 6: February 20

Figure 6.1: A typical cluster scheduler

2. The dispatcher node places the task on a queue.

3. When a worker node is available, the dispatcher removes the task from the queue and assigns it to a
worker node.

4. The worker node runs the task.

This design is similar to a thread pool that has listener and worker threads. The scheduling policy depends
on the kind of application that has to be run on the cluster.

Question: Would the dispatcher act as a single point of failure?
Answer: That would always be the case. To make the system failure tolerant, it has to be ensured that in
case the dispatcher fails, another machine can take over. 1

6.5.2 Scheduling in Clustered Web Servers

Interactive applications like websites that receive large number of requests are hosted on a cluster. Consider
a cluster of N nodes. Here one node acts as the dispatcher, called the load balancer. The (N − 1) worker
nodes are running a replica of the web server and act as the server pool. Any of the worker nodes can service
the user requests. The dispatcher receives the request from the user and directs it to one of the worker
nodes. The scheduling of the user requests can be done on the basis of:

• The dispatcher can pick up the least loaded server.

• The dispatcher can schedule the job in a round robin manner. In this case, it would not need to get
periodic load information updates from the worker nodes.

• If the worker nodes are heterogeneous, weighted round robin can be used where you weight a node
by the amount of resources and allocate more requests to machines with more computation power.

In the case of stateful applications, for, e.g. an online shopping store, the state of the shopping cart is
maintained by the machine which serves the user’s request. In this case, the request level scheduling won’t
work as the worker node maintains the session for the user. In these cases session-level load balancing
is used. When a new web browser starts a session, round robin is used to allocate the request to the worker

1A good case study on how this can be achieved is Apache Kafka.



Lecture 6: February 20 6-13

node. The server is then mapped to the user and all the subsequent requests by the user are sent to the
same machine. One way around this is sending the state back to the client as a cookie, which the client has
to send back to the server with every request. This way the state is maintained on the client and not the
server. This can allow request-level load balancing but would be more expensive as the state updates are
sent back to the user.

Question: If you have a state, can you keep it in shared memory or database?

Answer: Shared memory is not a typical OS abstraction. There is no such thing as distributed shared
memory that most operating systems support. There can certainly be distributed storage or shared databases
that can be used to maintain the state. To do so, you’d have to pay the price of I/O to retrieve the state
for every request. 2

6.5.3 Scheduling Batch Applications

This is used for larger jobs like ML training, data processing, and simulation. These are long-running jobs
that can take seconds to as long as hours to finish running. All these jobs come to the dispatcher queue and
have to be assigned to a worker node. For this, we need a batch scheduler that decides which node to run
the job.

One popular batch scheduler available on Linux machines is SLURM (Simple Linux Utility for Resource
Management). Fundamentally it has a queue and it has a scheduling policy. But it has many other features:

• It divides the cluster into subgroups. Each subgroup has its own queue.

• This allows user groups with separate scheduling policies for jobs.

• The various queues can put constraints based on the runtime of the job. For, e.g. a queue for short
jobs would terminate the job if it exceeds the time limit.

6.5.4 Mesos Scheduler

Figure 6.2: Mesos Architecture

The Mesos Scheduler was designed in Berkley but has now been adopted in open-source projects. It is a
cluster manager and scheduler for multiple frameworks. Mesos dynamically partitions the cluster on the fly

2For example, Redis can be used as a distributed in-memory cache because of



6-14 Lecture 6: February 20

based on the resource needs of different frameworks. It has a hierarchical two-level approach. Mesos allocates
resources to a framework and the framework allocates resources to the task. At any point, Mesos keeps taking
back resources from frameworks that do not require them anymore and assigns them to frameworks that
need them.

Figure 6.3: Mesos Scheduling

Mesos introduces the concept of resource offer. Whenever there are idle servers, Mesos creates an offer
and sends it to the framework. The framework either accepts or rejects the offer made by Mesos. It accepts
the offer if the resources being allocated are sufficient to run the task. Otherwise, it rejects the offer. There
are policies to decide which framework has to offer the resources. Once the task run by the framework is
done and the resources are idle, it is available to be re-offered by Mesos. There are 4 components to the
scheduler: The coordinator, worker, framework scheduler, and executer.

Question: Does the coordinator offer fractions of machines and not whole machines?
Answer: Correct. That’s why it’s called a bundle of resources. They don’t have to full servers. They can
be slices or a collection of slices.

Question:When does Mesos decide to make offers again after rejection?
Answer: That’s left to Mesos as a policy decision. No right answer. Every minute, every 10 minutes. It’s
ok, though, because these are batch jobs, not interactive.

Question: How do you know what size offers to make? Answer: No knowledge, but there are some typical
configurations. Policy decision.

Question: If there is a busy framework and a not-busy framework, do you want to offer the not-busy
framework more resources?
Answer: The framework itself is a cluster scheduler. If the framework is busy, it’ll take the resources. It is
advantageous for the framework to get more resources.

Follow up question: Would a framework accept resources even if it has satisfactory amount of resources?
Answer: A framework accepts resources if it has pending tasks in its queue. The frameworks are designed
to be well-behaved, i.e., they will not accept resources if they don’t need them.

Question: Once the resources are free, how are the sent back to Mesos master?
Answer: The worker nodes have a mesos monitor running on them. Once the node is idle, that entity
returns the node to Mesos master.

Question: Does Mesos have any intervention if the client contacts the server?
Answer: From the client’s perspective, Mesos is completely transparent. The client submits the jobs to the
queue of relevant frameworks.



Lecture 6: February 20 6-15

Question: What is the advantage of Mesos?
Answer: The pool of servers allocated to a framework can be dynamically changed at a server granularity.
This allows adjustment of resources based on the load on each framework. This makes better utilization of
servers in the pool.

Question: Does the Mesos coordinator know the resource requirement of each framework?
Answer: No, it doesn’t. That is why it makes offers. Mesos makes its decision based on acceptance or
rejection of the offer. If the offer is rejected it could be one of the two situations. Either the framework
doesn’t require more resources or the resources offered are not enough. Mesos would probe and try to figure
out the situation. It’s a “push” approach.

Question: When a task finishes the idle server goes back to the master. Is it a good idea to give up the
resource as another task could be received by the framework and that could have run on the idle node?
Answer: Server allocation is done on a per-task basis. If a task is waiting, the framework will eventually
get resources assigned.



6-16 Lecture 6: February 20

6.5.5 Borg Scheduler

Figure 6.4: Borg Scheduler

This is Google’s production cluster scheduler that was designed with the following design goals:

• The culture should scale to hundreds of thousands of machines.

• All the complexity of resource management should be hidden from the user.

• The failures should be handled by the scheduler.

• The scheduler should operate with high reliability.

These ideas were later used to design Kubernetes. Borg is a mixed scheduler designed to run both interactive
and batch jobs. Interactive jobs like web search and mail are user-facing production jobs that are given higher
priority. Batch jobs like data analysis are non-production jobs that are given lower priority. Interactive jobs
will not take up the entire cluster. The remaining cluster is used for batch jobs.

In Borg, a cell is a group of machines. The idea behind the Borg scheduler is to match jobs to cells. The
jobs are going to specify the resource needs and Borg will find the resources to run it on. If a job’s needs
change over time, it can ask for more resources. Unlike Mesos, the jobs do not wait for an offer but “pull”
the resources whenever they need them.

Borg has built-in fault tolerance techniques. For e.g. if a cell goes down, Borg would move the job to some
other cell. To allocate a set of machines to a job, Borg would scan machines in a cell and start reserving
resources on various machines. This is called resource reservation. The resources reserved are used to
construct an allocation set. This allocation set is offered to the job.

Question: So instead of waiting, the framework can ask for more resources?
Answer: There are no notion frameworks in the case of Borg. A job can ask for more resources. A job
itself could be a framework, batch job, or a web application. So Borg is not necessarily doing a two-level
allocation.

There is an ability to preempt. Lower-priority jobs are terminated to allocate resources to a higher-priority
job.



Lecture 6: February 20 6-17

Question: After termination, does Borg save the work in some memory? Answer: Typically Borg is not
responsible for saving state, just resources. Developers might add checkpoints if their job is low low-priority

Question: What’s the point of a cell? Answer: Let’s take a look at multi-tiered applications. We need
3 machines for the Interface, Application, and Databse. Or a clustered webserver. Of course you can ask for
just 1 machine.

Question: Are cells created proactivly or reactivly Answer: Generally ”best fit” on set of machines. You
don’t have to take the whole machine. Large services take a group of machines

Question: Can there be a single point of failure for interactive jobs. Answer: If the scheduler goes down,
the whole system goes down, and if the application fails, there is 5* replication to avoid this. Generally
seperated geographically at different data centers. The Borg monitors applications and will restart cells or
machines in the event of application failures. No state saves, however.

Question: When you say terminate, are we talking about pausing a job or killing a job?
Answer: Termination is a policy decision. The important part of preemption is to reclaim the servers. If
the job being terminated is a web server, it doesn’t make sense to pause it. But if it is a long-running batch
job, it would make sense to pause it.

Question: Is the priority determined based on interactive and batch or can we have multiple priorities?
Answer: There is a clear distinction between interactive and batch. The idea can be extended to have
multiple levels. Kubernetes allows you to make multiple priority levels.

The coordinator of Borg is replicated 5 times for fault tolerance. The copies are synchronized using
Paxos(would be studied in greater detail in Distributed Consensus). It is designed with a high degree
of fault tolerance.

The scheduler has a priority queue. So the scheduler can either be best-fit or worst-fit depending on whether
you want to spread the load or concentrate the load.


